Natural Stone Installation Guidelines

Premium Quality Natural Stone from UNILOCK.

Quality Stone - Natural Stone from Unilock is ethically sourced and quarried from the best stone regions of around the world; independent lab testing has revealed that Natural Stone from Unilock has extremely low water absorption, incredible freeze-thaw durability and outstanding flexural strength.

These guidelines are in accordance with ASTM C615, Standard Specification for Granite Dimension Stone; ANSI/CTI A108.1, Specification for the Installation of Ceramic Tile; and Terrazzo Tile and Marble Association of Canada (TTMAC), Specification Guide 09 30 00 Tile Installation Manual. Building code requirements vary from area to area, therefore review with local authorities for building code requirements in the area of the work.

Protection - All necessary Personal Protective Equipment (PPE) should be worn on site, as the site rules dictate, and in addition goggles, N100 stone dust rated masks and gloves should also be worn, especially when the units are being cut. A minimum requirement for personal protective equipment on site should include a hard hat, protective gloves, protective shoes and high visibility clothing. Prior to installation of Natural Stone from Unilock, read all instructions within these Installation Guidelines and contact a local technical sales representative if there are any questions before proceeding.

Please note: Not all of our Natural Stone is suitable for vehicular applications, please contact Unilock for further detail.

Natural Stone from Unilock is covered by a Transferable Lifetime Guarantee.
See Unilock website for more details at www.unilock.com/products/natural-stone/

Horizontal Application

1. Layout for Excavation
 1.1 Prior to excavation, mark out perimeter with paint, locating all elements, such as steps, planters, raised patios, etc., in order to get a “feel” for the design. Set measurements and stakes.

 1.2 The perimeter of the design area should be at least 8” (200mm) greater than the actual area to be constructed. Mark the elevations on stakes with string lines so that the depth of excavation can be checked as it progresses. Using a nylon mason’s line set the finished elevation of the stone. Measure all excavations and base thickness from these lines. A laser level is recommended for precise grading.

2. Excavation

 2.1 The depth of excavation depends on load requirements, drainage, existing soil conditions and stone thickness.

<table>
<thead>
<tr>
<th>Application</th>
<th>3/4” Clear Granular Subbase</th>
<th>Concrete Base & Reinforcement</th>
<th>Bedding Course</th>
<th>Stone Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian Traffic</td>
<td>Min. 6” (150mm)</td>
<td>Min. 4” (100mm)</td>
<td>Min. 1” (25mm)</td>
<td>Min. 7/8” (22mm)</td>
</tr>
<tr>
<td>Patios, Walkways,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pool Decks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicular Traffic</td>
<td>Min. 8” (200mm)</td>
<td>Min. 6” (150mm)</td>
<td>Min. 1” (25mm)</td>
<td>Min. 25” (65mm)</td>
</tr>
<tr>
<td>Light Duty Traffic (Driveway)</td>
<td></td>
<td>10m (1/2” dia.) Rebar set on</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>450mm (18”) grid</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 Total Excavation = Granular Base + Bedding Course + Stone Thickness + 1/2” (13mm) for an un-compact bed thickness

 Reinforcement must be tied and/or continuous and set 25mm (“) from bottom of the concrete pour.

 Concrete to be air entrained to a min. 32 mpa.
Table 2: Typical Base Thickness for Flexible Substrate Installation

<table>
<thead>
<tr>
<th>Application</th>
<th>Granular Subbase</th>
<th>Bedding Course</th>
<th>Stone Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian Traffic Patios, Walkways, Pool Decks</td>
<td>6” (150mm)</td>
<td>1” (25mm)</td>
<td>7/8” (22mm)</td>
</tr>
<tr>
<td>Vehicular Light Duty Traffic (Driveway)</td>
<td>12” (300mm)</td>
<td>1” (25mm)</td>
<td>2.5” (65mm)</td>
</tr>
</tbody>
</table>

Total Excavation = Granular Base + Bedding Course + Stone Thickness - 1/2” (13 mm) for an un-compacted bedding thickness

3. Subsurface Treatment

3.1 When working in areas where there are poor soil conditions (e.g. heavy clay, disturbed soils), there is the potential for surface deformation or settlement. Action must be taken to increase the depth of the base to provide more stability. Always remove any loose or disturbed soils.

3.2 Site Drainage: All lines and final elevations of the pavement should slope away from the structure. The minimum recommended slope is 2% or 1/4” per 1’ of pavement (6mm per 305mm). The maximum slope for pedestrian accessibility is 8%. In areas where the slope cannot be achieved, provisions must be made to install drains so that the water can be carried away to an appropriate outlet.

4. Soil Compaction

4.1 Once an area has been excavated, the soils at the bottom must be compacted prior to the placement of the new base material. It is important to spend as much time as possible compacting to achieve good compaction. Insufficient compaction may result in settlement.

4.2 Compaction achieves four main purposes. It increases the load-bearing capacity of the soil, prevents settlement/ rutting, reduces seasonal movement from moisture changes and freeze-thaw cycles and helps ensure that movement during freeze-thaw cycles in uniform.

4.3 Avoid compacting on excessively wet or dry soils. Every soil has optimum moisture content. Higher or lower water content than optimum produces lower density during compaction. The optimum moisture content in relation to density of a soil is normally tested in a soil laboratory using the Standard Proctor Density (SPD) test.

4.4 The best way to compact cohesive soils, such as clay and silt, is with a low amplitude vibratory roller or rammer (“jumping jack”) as they effectively remove air and force the particles closer together. For very heavy clays, a minimum 5,000 lbf (21 kN) reversible plate rammer is recommended. Adding a thin layer of base material (1/2” - 13mm) over stable but sticky clay can reduce compaction time.

4.5 Non-cohesive soils, like sands and sandy gravels, compact best with vibratory plate compactors and vibratory rollers. It’s recommended to use large plate compactors, at least 4,000 lbf or 18 kN, or a walk-behind vibratory roller. For larger jobs, a ride-on double drum roller compactor with 7,000 lbf to 9,000 lbf (30 to 40 kN) is suggested.

4.6 Sometimes during compaction, soft areas will become apparent, especially in heavy clay soils. In these cases, it will be necessary to remove the soil and replace it with suitable base material and compact it.

4.7 Installation of geotextile (filter fabric) over cohesive soils, i.e. clays or silts, is highly recommended. It is also a good option for use over soils that stay saturated for a large portion of the year. The fabric separates the “fines” in soils from the granular base and prevents them from migrating upward into their base, resulting in reduced base performance.

4.7.1 When installing the first layer of aggregate, it is important not to compromise the integrity of the geotextile with wrinkles. Place the first aggregate lift ahead of the loader wheels, ensuring that the equipment does not drive directly over the geotextile. This also reduces the risk of tearing or puncturing the fabric. Compaction should take place in 3” (76mm) layers to maximize results.

5. Base Thickness

5.1 The thickness of the base is determined by traffic loads, soil strength, subgrade soil drainage, moisture and climate.

5.2 Minimum base thickness guidelines that apply to most areas in North America are shown in Tables 1 & 2 above. Greater thicknesses for the listed applications are often used in regions with numerous freeze-thaw cycles, expansive soils or very cold climates.

5.3 Individual base lifts (layers) should be installed in uniform thicknesses to prevent waste and help ensure uniform density. A thickness tolerance of 3/4” (19mm) to 1/2” (13mm) is recommended for the final base thickness.
6. Flexible Horizontal Stone Substrate

6.1 Bedding Course

6.1.1 The material recommended for the bedding course is coarse sand (concrete sand).

6.1.2 Sand gradation should conform to the requirements shown in Table 3. These are the specifications for course multi-grained sands. Check the sieve analysis periodically for sand delivered to the site through a local materials testing lab. Sometimes the quarry, or supplier of the sand, will supply this analysis. Check it before accepting the sand on the site.

6.1.3 The evenness of the base surface should be checked with a straight edge before placing the bedding sand. Sand should not be used to fill depressions in the base.

6.1.4 In the event the application calls for raised steps or patios, a 1/8” clear chip can be used.

6.2 Edge Restraints

6.2.1 The purpose of installing an edge restraint is to prevent the horizontal movement of the stone along the perimeter, proper edging is there to prevent the loss / spread of bedding material that would inevitably lead to failure of the paved area. There should always be an edge restraint installed along the entire perimeter or where there is a change in the pavement material, unless the stone is being installed along a fixed edge, such as a building, a retaining wall, a curb or a planter. Restraints should also be selected, designed and installed to remain stationary under the occasional impact from wheels.

6.2.2 The base material should always extend beyond the restraint by the same dimension as the thickness of the base. This contributes stability to the restraint and the stone edge, especially in soils subject to frost heave. Soil backfill is never a suitable edge restraint, and edge restraints should never be installed on top of the bedding sand.

6.2.3 Stone joint lines should either be parallel or be perpendicular to the largest abutting structure.

6.2.4 After the edge restraints have been established, the final bed for the stone to sit on must be prepared. This requires leveling and compacting the bedding sand to a final thickness 1” (25mm) depth.

7. Rigid Horizontal Stone Substrate

7.1 Slab-on-grade Concrete

7.1.1 When designing a concrete slab on grade to receive natural stone, close attention must be paid to the compaction of the subsoil. Refer to Table 2 above.

7.1.2 A vapor barrier must be installed beneath the slab to prevent migration of moisture from the soil.

7.1.3 The slab must be fully cured and free of all curing compounds and latent materials prior to stone installation.

7.1.4 Ensure a slab tolerance of 1/4” (6mm) in 10’ (3048mm), and provide the required control joints cut into the slab within 24 hours of its pour, at designed locations to control cracking.

7.1.5 Locate control joints to align with stone tile joints where possible to ensure that movement stresses are not transferred to the stone tile.

7.1.6 A heavy broom finish or concrete rake finish is recommended for bonding the stone. If the slab has a smooth finish, blast-tracking or scarification is recommended to provide the required texture to allow the setting material to properly bond and key to the rigid substrate.

7.2 Mortar Components

7.2.1 Mortar materials shall conform to CSA A179 (standard specifications for mortar for use in bedding, jointing and bonding of masonry units) and ASTM C270 (standard specification for mortar for unit masonry).

7.2.2 Water: Potable (clean, exempt of ice, oils, acid, alkalis, organic matter, sediments or any other harmful matter), meeting ASTM C1602/C1602M (standard for mixing water used in the production of Hydraulic Cement Concrete)

7.2.3 Aggregate: ASTM C270

7.2.3.1 Use same brands of materials and source of aggregate for entire project.

7.2.3.2 Use washed aggregate consisting of natural sand or crushed stone for mortar that is exposed to view.
8.5 Installation - Flexible Substrate

8.5.1 Starting from the middle of the pavement is the most recommended option. By starting at the center, a wider laying face is possible, allowing more people to place units at the same time. Lastly, starting at the middle of the pavement may be necessary because there may be no perpendicular corners from which to begin the laying patterns.

8.5.2 Stone units that have just been laid may be walked on. Fill in any grooves left by the screed guides before laying the stone.

8.5.3 Compacting Stone Units

8.5.3.1 Compacting is very important for two reasons: First, it removes any slight height variations between the individual units, providing a smooth surface. Second and more importantly, it "sets" the units into the bedding course.

8.5.3.2 Compacting forces sand from below up between the joints of pavers securing them from movement.

8.5.3.3 Ensure the surface is free of debris or sand before compacting. This will prevent scuffing on the face of stone and make a smoother surface.

8.5.3.4 Dead blow or mallet set slabs into place using a rubber mallet for pedestrian applications. Avoid using a plate tamper on the surface of the natural stone as it might damage or chip the slab. In the event the application calls for natural stone in light duty vehicular applications, a plate tamper with a neoprene pad is required. Contact your Unilock rep for further details.

8.5.3.5 After filling the joints, on light duty vehicular applications, the units are compacted again using a plate compactor with neoprene pad. This action will help settle the jointing sand into the joints and interlock the units.

8.5.4 Light Duty Vehicular Area Compaction

Refer to Tables 1 & 2 for stone thickness.

Contact Unilock for further explanation

8.5.5 After filling the joints, on light duty vehicular applications, the units are compacted again using a plate compactor with neoprene pad. This action will help settle the jointing sand into the joints and interlock the units.
8.5.3.7 After compaction, the entire area should be swept again to ensure that the joints are filled with sand. On those light duty vehicular applications, a second pass with the compactor is recommended to assist in well penetration of the sand into the joints. Sweep the joints full and remove excess sand.

8.5.4 Jointing Sand

8.5.4.1 Sweeping sand into the joint of the stone units completes the interlocking effect, as it provides frictional resistance to vertical movement of individual stones. The sand also helps to distribute the load placed on the stone surface.

8.5.4.2 Before sweeping in jointing sand, the surface should be checked for any damaged stones that may have appeared. A final color distribution check should also be made. These stones should be replaced before sand is swept in.

8.5.4.3 Jointing sand is a special mix of graded sands and binders formulated to achieve optimum lock-up of stones and it also discourages weed growth and the penetration of insects. Acceptable materials from Unilock include:

1. Unilock Polymeric Jointing Sand;
2. Easy-Pro Joint Stabilizing Compound;
3. D-2000 Heavy-Duty Permeable Joint Compound;
4. Drain-Plus Permeable Joint Compound.

8.5.4.4 Follow manufacturers recommended installation instructions.

8.6 Installation - Rigid Substrate

8.6.1 Bonded Mortar Bed

8.6.1.1 Commonly used installation for large dimension stone flooring units.

8.6.1.2 A bonded mortar bed system is bonded to the substrate with the use of a slurry coat or bond coat. Backbuttered stone is then beat into the fresh mortar bed, leveled and allowed to cure.

8.6.1.3 This system requires water to drain along the stone surface. It is essential to have the substrate built with adequate drainage.

8.6.1.4 This system offers better compressive strength with a setting bed rather than on concrete as the cushion of the setting bed will allow for more flexural force.

8.6.1.5 The mortar bed and bond coat should be 2-1/2” (65mm), in addition to the stone thickness, is required for installation.

8.6.1.6 This method of installation can easily accommodate minor variations in the thickness of the stone and can correct poor levels in the substrate.

8.6.2 Grout Joint

8.6.2.1 Latex-Portland Cement Grout for Floors with Joints = 1/8” (≥3mm) Interior or Exterior:

8.6.2.1.1 Factory blended stain resistant latex modifiers, portland cement and graded silica sand and dry-set grout and meeting requirements of ANSI A108.10. (Installation of Grout in Tile work)

8.7 Installing around an Opening or Obstruction

8.7.1 For the installation of stone units around openings, like planters and other landscape constructions, there must be an adequate edge restraint in place around the opening against which to place the stone.

8.7.2 First place a perpendicular string or snap chalk lines on all four sides of the opening. Then, place a border of full-sized stone units against the edge restraint.

8.8 Cutting Stone Units

8.8.1 Units are typically cut along the edge of the pavement, around planters or drainage inlets or when there is a change of pattern. Where pieces need to be cut, this is best achieved by marking out long sections at one time.

8.8.2 Begin cutting infill units as soon as the installation is far enough ahead to allow room for cutting, thereby reducing the potential for lateral movement. Small pieces (less than 1/3 of a paver) should be avoided as much as possible.
8.8.3 Cutting should be carried out using a water cooled bench mounted diamond tipped power saw.

8.8.4 It must however be noted that the aesthetic finish achieved will depend greatly upon the choice of cutting mechanism and the skill of the installer. Cutting blades and other equipment designed specifically for natural stone units should be selected to achieve the desired effect.

8.8.5 Cut units should be inserted prior to completion of the working period or before the onset of inclement weather.

8.9 Natural Stone Exterior Stair Installation

8.9.1 Deflection and Vibration: The total combined dead and live load deflection should be limited to L/360 of the span. It is recommended that live load deflection be limited to a maximum of L/480.

8.9.2 Stair Substrates

8.9.2.1 Determining the limitations and characteristics of the surface that the stone will be installed on is critical (as per 8.9.1).

8.9.2.2 Reinforced Poured Concrete: Use a heavy broom finish or concrete rake finish on the poured concrete when setting the stone using a bond coat installation method. Inspect the surface to ensure it is free of cracks or oily films and curing compounds.

8.9.2.3 Stair Installation Materials

8.9.2.3.1 Bond Coat: Portland cement mortar, same as indicated above for horizontal stone installation over a rigid substrate.

8.9.2.3.2 Grout: Latex portland cement, same as indicated above for horizontal stone installation over a rigid substrate.

8.9.2.4 Stair Installation

8.9.2.4.1 Concrete is required to be sound with a steel trowel or heavy broom finish, free of cracks, contaminants, curing compounds or laitance.

8.9.2.4.2 Surface variation of the concrete must not exceed 1/4" (6mm) in 10' (3048mm) from the required plane and not more than 1/16" (2mm) in 12" (305mm).

8.9.3 Apply the bond coat directly over the substrate and backbutter the stone treads and risers using the mortar.

8.9.4 Use sufficient bond coat to ensure a minimum of 90% contact.

8.9.5 Set and align stone treads and risers straight and true to conform with all detailed dimensions.

8.9.6 Contact between the substrate, setting bed and stone shall be evenly distributed to provide full support to the stone.

8.9.7 Allow the installation to fully cure.

8.9.8 Force grout into full depth of joint and remove excess and clean, as recommended by grout manufacturer.
Vertical Application

1. Surface Preparation
 1.1 Determine the correct surface preparation for the base wall system identified on the project.
 1.2 Examine rough-in and built-in construction for protrusions within the wall system to verify actual locations of protrusions before installation of stone units.

1.3 For applications on exterior cavity walls:
 1.3.1 Stone veneer units will form part of the exterior rain screen and protective facing, and therefore must allow for ventilation, drainage and pressure equalization of the voids between the veneer and the insulation with the outside pressures.
 1.3.2 Construct cavity space divided into separate compartments as a means of controlling these pressure differences within the building envelope.
 1.3.3 A cavity space can be achieved behind the stone veneer units by suspending the units from anchors which are supported by the backup wall system. Joints between the stone units are typically left dry, creating a "dry joint".
 1.3.4 Cavity walls are only used for stone applications on structures, and not typically found on planters or vertical landscape applications.

1.4 For non-cavity wall exterior applications (planters or landscape elements) - Wet Joint System:

<table>
<thead>
<tr>
<th>Table 4- Wall Preparation - Wet Joint System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall Type</td>
</tr>
<tr>
<td>Semi-Rigid Substrate</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Semi-Rigid Substrate - Gypsum sheathing board covering stud wall</td>
</tr>
<tr>
<td>Rigid Substrate</td>
</tr>
<tr>
<td>Rigid Substrate</td>
</tr>
</tbody>
</table>

2. Mortar Components
 2.1 Mortar materials shall conform to CSA A179 and ASTM C270.

2.2 Water: Potable (clean, exempt of ice, oils, acid, alkalis, organic matter, sediments or any other harmful matter), meeting ASTM C1602/C1602M.

2.3 Aggregate: ASTM C270
 2.3.1 Use same brands of materials and source of aggregate for entire project.
 2.3.2 Use washed aggregate consisting of natural sand or crushed stone for mortar that is exposed to view.

2.4 Cement: Normal portland, in accordance with CSA A3000, Type GU.

2.5 Hydrated Lime: ASTM C207, Type S.

2.6 Cold Weather Admixture:
 2.6.1 Non-chloride, non-corrosive, accelerating admixture in accordance with CSA A179 and ASTM C494, Type C, and recommended by manufacturer for use in masonry mortar of composition indicated.

2.7 Colored Cement
 2.7.1 Colored cements are used when tinting the cement to minimize the color difference between the stone units and the mortar.
 2.7.2 Package blended made from portland cement and lime and mortar pigments in accordance with specified requirements, containing no other ingredients, and as follows:
 2.7.2.1 Use non-staining masonry cement for cementitious portion of specified mortar type.
 2.7.2.2 Formulate blend as required to produce color indicated or, if not indicated, as selected from manufacturer's standard colors.

3. Mortar Mixing
 3.1 Prepare and mix mortar materials under strict supervision and in small batches for immediate use only. Mix proprietary mortars in strict accordance with CSA A179 and ASTM C270. Do not use re-tempered mortars for colored mortars.

3.2 For Stone Below Grade and In Contact With Earth
 3.2.1 Use premixed silo or bagged Type ‘S’ masonry cement mortar having minimum compressive strength of 8.5 mpa at 28 days, jobsite tested.

3.3 For Exterior Wythe of Cavity Walls (non load-bearing, above grade)
 3.3.1 Use Type ‘N’, 1:1:6 pre-mixed, pre-colored, Portland cement/lime/sand mortar.

3.4 Interior Reinforced or Non-Reinforced Walls: Type ‘S’
7.6.2 Allow cleaned impervious stone surfaces to dry before setting.

7.6.3 Wet absorptive stone joint surfaces thoroughly before applying mortar.

7.6.4 Lay stonework so that joints are even and so that average distance between joint center-line is equal to the nominal modular dimension of the stone.

7.6.5 Use chipped or blemished units only where the defect will be concealed; reject all defective and broken units or units with chipped edges or corners.

7.7 When mortar is ‘thumbprint’ hard, tool all joints (exposed or concealed) concave. Use sufficient force to press mortar tight against stone units on both sides of joints. Remove excess material or burrs left after jointing. Use trowel or rub with burlap.

7.8 Lay all joints 3/8” (10mm) thick. Fill all joints solidly with mortar except where specifically designated to be left open.

7.9 When required, keep cavity space and weep holes clean and free of mortar droppings and other foreign materials.

8. Trim Units

8.1 To achieve a finished architectural look on horizontal or sloping top areas of exterior walls, piers, retaining walls or other surfaces, natural edge coping and fullnose coping stones must be used to provide adequate run-off protection to the wall areas. Caps should extend approximately 1” to 2” (25mm to 50mm) beyond the finished stone surface.

9. Repointing or Tuckpointing

9.1 Repoint defective joints as follows:

9.1.1 Cut back joints 1/2” (13mm), taking care not to damage units. Remove dust and loose materials by brushing or by water jet.

9.1.2 If water jet is used, allow excess water to drain before repointing.

9.1.3 Repoint with same mix as original. Pack mortar tightly in thin layers, and tool joints or strike flush as required.

10. Cleaning:

10.1 Keep work clean and free of mortar stains during laying. Allow mortar droppings which adhere to wall to dry out but not set. Then rub with small piece of stone followed by brushing to remove all traces. On completion of stone, after mortar is thoroughly set and cured, and defective joints tucked and pointed, clean stone thoroughly.

10.2 Remove mortar with wood paddles and scrapers before wetting. Saturate stone with clean water and flush off loose mortar and dirt. Clean stone units using water, scrubbing brushes and wood paddles only.
11. Sealants

Proprietary sealing agents are commonly used on paved surfaces, to reduce moisture penetration of the laying course material, and minimize staining from spillages. Although such products may offer certain advantages, careful consideration must be given to the suitability of the sealant and any subsequent effect on the paving performance or appearance.

12. Maintenance:

A full reference document may be obtained from Unilock Maintenance Guide, highlighting the necessary maintenance routines to be undertaken for the ensured longevity of the pavement.

12.1 The use of mechanical pavement cleaning machinery should be avoided during the initial life of the pavement to avoid loss of jointing material until such time as the joints have stabilized naturally or chemically. If the natural method is adopted, the time period to abstain from the use of these machines will be dependent upon the local environment of the area and the volume of traffic that the area is to receive, although a 3 to 4 month period is typically recommended.

12.2 The area should be inspected regularly in the early life of the pavement to ensure that the joints remain full. Where there is evidence of empty joints, these should be refilled promptly.

13. Further Information:

13.1 For technical advice on commercial installations, or when confronted by unusual problems or circumstances, please contact Unilock at 1-800-UNILOCK or by email on customerservice@unilock.com.

13.2 Not all of the Natural Stone is suitable for vehicular applications, please contact Unilock for further detail.

13.3 All necessary Personal Protective Equipment (PPE) should be worn on site, as the site rules dictate, and in addition to this, goggles, masks and gloves should also be worn especially when the units are being cut. A minimum requirement for personal protective equipment on site should include a hard hat, protective gloves, protective shoes and high visibility clothing.

Reference Standards:

American Society for Testing and Materials (ASTM):

3. ASTM C270; Standard Specification for Mortar for Unit Masonry.

Canadian Standards Association (CSA):

1. CSA A179; Mortar and Grout for Unit Masonry.
2. CSA A3000; Cementitious Materials Compendium.

American National Standards Institute (ANSI):

1. ANSI A108; Standard Specification for Steel Bar, Carbon and Alloy, Cold-Finished.

Further Information:

For technical advice on commercial installations, or when confronted by unusual problems or circumstances, please contact Unilock at 1-800-UNILOCK or by email at customerservice@unilock.com.

For more information about Natural Stone from Unilock, visit www.unilock.com.

June 2014